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Variability in Older Forest Structure in Western Oregon

By Nathan J. Poage'

Abstract

The goal of this report is to assist Federal land managers
in developing realistic structural targets for young forests for
which the development of late-successional and old-growth
(LSOG) characteristics is a long-term management objec-
tive (i.e., in Late-Successional Reserves established under the
Northwest Forest Plan). A unique LSOG structural database
was created using complete inventories, or censuses (i.e.,
100% timber cruise records), of all conifer trees > 1 ft diam-
eter from 586 recently harvested older forests on five Bureau
of Land Management (BLM) districts in western Oregon. The
average area of each of the 586 inventoried older forests, 28.1
ac, clearly reflected the spatial scales typical of forest manage-
ment units on Federal lands covered by the Northwest Forest
Plan. All told, the LSOG database contains conifer tree census
data for over 16,400 ac of LSOG forests. Ecoregion-level vari-
ability in LSOG forest structure was compared and contrasted
for sites contained in the LSOG database. The spatial vari-
ability of trees and snags at 14 LSOG sites was characterized
using structural data collected along one or more long (396-
2178 ft) belt transects at each site.

Introduction

Late-successional forest habitat is considered critical for
old-growth dependent species such as the northern spotted
owl (Strix occidentalis var. caurina) and the marbled murrelet
(Brachyramphus marmoratus). Regional concerns about 1)
the loss of critical older forest habitat due to timber harvest-
ing within the range of the northern spotted owl and 2) the
need to produce timber and other forest products led to the
formal adoption of the Northwest Forest Plan in 1994 by the
USDI Bureau of Land Management (BLM) and USDA Forest
Service (FS) (Record of Decision 1994, Regional Ecosystem
Office 2005). The area covered by the Northwest Forest Plan,

"Portland Forestry Science Laboratory, PNW Research Station, USDA
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approximately 24.5 million acres in western Washington,
western Oregon, and northwestern California, falls within the
range of the northern spotted owl (Regional Ecosystem Office
2005). Within the 7.4 million acre network of Late-Succes-
sional Reserves (one of seven Federal land-use allocations
designated under the Northwest Forest Plan) forest managers
may silviculturally treat young forests if the “purpose of these
silvicultural treatments is to be beneficial to the creation and
maintenance of late-successional forest conditions” (FSEIS
1994).

Creating and maintaining late-successional and old-
growth (LSOG) forest conditions requires an operational
description of the forest structure desired in the future
(i.e., the structural target). In theory, tree species and size
distributions derived from actual old-growth forests can
provide managers with realistic and easily communicated
structural targets for young forests where accelerating the
development of late-successional forest characteristics is a
management objective. In practice, however, defining realistic
old-growth forest structural targets is challenging for at least
three reasons.

First, LSOG structural targets should reflect the local
variability found within regionally defined forest types.

For example, although Douglas-fir - western hemlock
(Pseudotsuga menziesii [Mirb.] Franco - Tsuga heterophylla
[Raf.] Sarg.) forests occur in both the Oregon Coast Range
and Cascades, these forests exhibit a great deal of structural
variation between the two geographic areas (Poage and
Tappeiner 2005). Might it not be realistic to establish differ-
ent structural targets for older Douglas-fir - western hemlock
forests in the Oregon Coast Range and Cascades? Character-
izing the structure of LSOG forests by ecoregion is a straight-
forward means of reflecting local variation in LSOG structural
targets. Ecoregions, or ecological regions, are areas identified
by “the patterns and the composition of biotic and abiotic
phenomena [e.g., geology, physiography, vegetation, climate,
soils, land use, wildlife, and hydrology] that reflect differ-
ences in ecosystem quality and integrity...” (Pater et al. 1998).
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Ecoregions are hierarchical in nature. Lower-level, finer-scale
ecoregions are nested within higher-level, coarser-scale ecore-
gions. In Oregon and Washington, for example, the level IV
Coastal Uplands (1b) ecoregion is nested with eight other level
IV ecoregions within the coarser-scale, level III Coast Range
(1) ecoregion. Western Oregon and Washington are divided
into 7 level III ecoregions, whereas North America is divided
into 15 level I ecoregions (Pater et al. 1998).

Second, LSOG structural targets should reflect appro-
priate scales of management. Although forest management
units on Federal lands covered by the Northwest Forest Plan
are typically > 25 ac, almost all studies of old-growth forests
in the Pacific Northwest have characterized tree species and
size structure using a limited number of small (e.g., 0.25 ac)
plots at multiple sites or somewhat larger plots (e.g., 1.25-8.25
ac) at one or two sites (Juday 1977, Means 1982, Spies and
Franklin 1991, Hershey 1995, Poage 1995, Tappeiner et al.
1997, Poage and Tappeiner 2002, Goslin 1997, Winter et al.
2002a,b). Scaling up research findings from finer plot-level
scales (e.g., 0.25-8.25 ac) to the coarser scales (e.g., > 25 ac)
typical of forest management activities in the Pacific North-
west may prove misleading if only the closed-canopy portions
of old-growth forests have been sampled using small plots
(Poage and Tappeiner 2005).

Third, and finally, LSOG structural targets should reflect
the spatial variability in tree species and sizes present horizon-
tally within older forests. With few exceptions (e.g., Kuiper
1988, Spies et al. 1990, Bradshaw and Spies 1992, Poage
1995, Goslin 1997, Franklin et al. 2002, Zenner 2004), most
old-growth studies in the Pacific Northwest have not described
horizontal spatial variability in older forests. Studies that
have characterized spatial variability indicate that trees and
snags are not uniformly distributed in LSOG forests. Lack
of detailed information can make it difficult for managers
to know, for example, how often large-diameter Douglas-fir
and small-diameter non-Douglas-fir conifers (e.g., western
hemlock) overlap spatially at fine scales when both are found
in the same old-growth forest. As a result, managers may face
difficulties establishing realistic spacing guidelines for young
forests where the development of late-successional forest
characteristics is a management objective.

The goal of this report is to assist Federal land managers
in developing realistic structural targets for young forests for
which the development of LSOG characteristics is a manage-
ment objective (i.e., in Late-Successional Reserves). As such,
this report has three specific objectives which collectively
address the above-noted challenges associated with defining
realistic old-growth forest structural targets. Objective 1 is to
create a BLM LSOG conifer database of the conifer tree struc-
ture of 586 LSOG forests on the Coos Bay, Eugene, Medford,
Roseburg, and Salem BLM districts in western Oregon. This
was done using inventory data from harvest units of recent
BLM old-growth timber sales. Objective 2 is to compare and
contrast ecoregion-level variability in LSOG forest structure
for BLM lands in western Oregon. Specifically, the conifer
components of LSOG forest structure contained the BLM

LSOG conifer database (Objective 1) were characterized and
compared by level IIT and IV ecoregions (Pater et al. 1998).
Objective 3 is to characterize the spatial variability of trees
and snags at 14 different LSOG sites on BLM land in western
Oregon. This was done using structural data collected along
one or more long (> 330 ft) belt transects at each site.

Methods

Objective 1. Create the BLM LSOG
conifer database

The BLM LSOG conifer database was created using
complete inventories, or censuses (i.e., 100% timber cruise
records), of all conifer trees > 1 ft diameter at breast height (or
dbh, measured at 4.5 ft above the ground) from 586 recently
harvested late-successional and old-growth (LSOG) forests on
the Coos Bay, Eugene, Medford, Roseburg, and Salem BLM
districts of the USDI Bureau of in western Oregon. All BLM
timber sales terminated during the period 1990-1993 on these
five BLM districts and stored at the National Archives and
Records Administration in Seattle, Washington, were system-
atically examined to identify 100% timber cruise records of
older forests. Timber sales terminated during the period 1990-
1993 through the Tillamook office of the Salem BLM were
not archived in Seattle but were, instead, stored in Tillamook;
these timber sales were similarly examined at the Tillamook
office. Each timber sale comprised one or more separate
harvest units. These harvest units are also referred to as sites
throughout this report.

Useable, 100% timber cruise records were identified for a
total of 586 spatially distinct older forest sites. All 586 of these
timber cruise records were used to construct the BLM LSOG
conifer database. (No record was kept of the total number of
timber cruise records examined, useable or otherwise.) To
be considered useable, a 100% timber cruise record had to
include:

1. a complete electronic inventory data file containing:

a. tree counts by four-inch dbh classes, sorted
by sub-sale (each sub-sale in a timber sale
corresponded to a unique harvest unit and
species combination), and

b. the automated data processing (ADP) number
used to link the electronic inventory data file
with the archived hardcopy information (item 2),
below;

2. archived hardcopy information, namely:

a. the list of sub-sales identifying the harvest units
and species within each timber sale,



b. the timber sale contract map (i.e., the Exhibit A),
used to identify the acreage and location (to the
nearest quarter-quarter section) of each harvest
unit; and

c. the timber sale summary, which contained the
ADP number used to link the archived hardcopy
information with the electronic inventory data file
(item 1), above; and

3.the presence of at least one Douglas-fir tree with a dbh
> 40 inches on each harvest unit.

The electronic inventory data files (item 1) were obtained
from the BLM Oregon State Office in Portland, Oregon. The
archived hardcopy information (item 2) was obtained from
the National Archives and Records Administration in Seattle,
Washington and the Tillamook office of the Salem BLM in
Tillamook, Oregon.

Data extracted from the archived hardcopy information
were entered into a Microsoft Access 2000 database. Custom
software was developed and used to merge the Access data-
base with the electronic inventory data files. The merged data
were imported into SAS 9.1 (SAS Institute 2003). In SAS, the
trees inventoried at each site were assigned to 1-foot diameter
classes: 1-foot (1 ft < dbh < 2 ft), 2-foot (2 ft < dbh < 3 ft),
and so forth to 9-foot and larger (dbh > 9 ft). Trees were then
grouped by species and diameter class into species-diameter
classes (SDCs). For example, western hemlock (WH) with
diameters at breast height falling in the 2-foot diameter class
(i.e., 2 ft < dbh < 3 ft) were assigned to the WH_2 species-
diameter class (SDC). In addition to Douglas-fir and western
hemlock, SDCs were created for the following 11 species of
conifers: grand fir (Abies grandis (Dougl. ex D. Don) Lindl.),
incense-cedar (Calocedrus decurrens Torr.), noble fir (Abies
procera Rehd.), Port Orford cedar (Chamaecyparis lawso-
niana (A. Murr.) Parl.), ponderosa pine (Pinus ponderosa
Laws.), Pacific silver fir (Abies amabilis (Dougl.) Forbes),
sugar pine (Pinus lambertiana Dougl.), Sitka spruce (Picea
sitchensis (Bong.) Carr.), white fir (Abies concolor (Gord.
and Glendl.) Lindl. ex Hildebr.), western red cedar (Thuja
plicata Donn), and western white pine (Pinus monticola
Dougl. ex D. Don).

Although all coniferous species present at each site
were included in the electronic inventory data, the Coos
Bay, Eugene, Medford, Roseburg and Salem BLM districts
differed in terms of which (if any) of the hardwood species
present at a given site were included in the electronic inven-
tory data for that site. Inclusion in the electronic inventories
of trees with dbh < 12 in and snags of all sizes was similarly
variable among the five BLM districts in western Oregon. To
ensure consistency across the five BLM districts, hardwood
species, trees with dbh < 12 in, and snags were dropped from
the merged dataset in SAS. For this reason, the BLM LSOG
conifer database contains only data for live conifer trees with
dbh > 12 in.

Methods 3

The final steps in constructing the BLM LSOG conifer
database were:

1. calculate the number of trees/ac (TPA) and basal area
(BA, ft*/ac) in each species-diameter class (SDC) at
each site using SAS;

2. use the ArcView 3.3 (ESRI 2002) and ArcGIS 8.3
(ESRI 2003) geographic information systems (GIS) to:

a. assign latitudes and longitudes in decimal degrees
to each site based on the estimated center of each
harvest unit,

b. create a point coverage of the sites using the
assigned latitudes and longitudes, and

c. assign level III and level IV ecoregions to each
site using the point coverage of the sites and the
ecoregion coverage (Pater et al. 1998) obtained
from the Oregon Geospatial Data Clearinghouse
(www.gis.state.or.us/data/alphalist.html);

4. merge the output from steps 1 and 2 with the archived
hardcopy data for each site (previously imported from
Access into SAS) and save the resulting data file as a
permanent SAS dataset; and

5.export the permanent SAS dataset (step 4) to BLM_
LSOG_conifer_data.xls, the master Microsoft Excel
2002 workbook.

Objective 2. Compare and contrast ecoregion-
level variability in LSOG forest structure

Comparisons of LSOG forest structure among ecoregions
were made using two complimentary approaches. In the first
approach, the species composition characteristic of each level
IV ecoregion was determined and compared with the other
level IV ecoregions. For each species, the proportion of sites
containing the species was calculated for each of the level IV
ecoregions containing 10 or more sites. A total of 10 level IV
ecoregions met this criterion; 566 of 586 sites fell within these
10 level IV ecoregions (Table 1). In all, 13 species proportions
were calculated for each of these 10 level IV (i.e., a total of
130 species proportions were calculated).

In the second approach, LSOG structural comparisons
among ecoregions was made for each SDC combination of
the 13 conifer species and 5 diameter classes (1 ft < dbh < 2
ft, 2 ft < dbh < 3 ft, 3 ft < dbh < 4 ft, 4 ft < dbh < 5 ft, and dbh
> 5 ft). The BAs were calculated for each SDC combination
(65 total) and each level IV ecoregion containing 10 or more
sites (10 total), for a total of 650 mean BAs. The 10 mean BAs
(one for each level IV ecoregion) for each SDC were used to
calculate a 99% confidence interval for the grand mean BA of
the SDC. An SDC was considered to be significantly associ-
ated with a particular level IV ecoregion if the mean BA of the
SDC for the level IV ecoregion was significantly larger than
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the grand mean BA of the SDC for all 10 level IV ecoregions
(i.e., the mean BA of the SDC for the level IV ecoregion fell
outside of and above the 99% confidence interval for the grand
mean BA of the SDC for all 10 level IV ecoregions).

To provide readers with a further level of detail, TPA and
BA were summarized for each level IV ecoregion using two
broad species groups of conifers (Douglas-fir and non-Doug-
las-fir) and the five diameter classes noted in the previous
paragraph. For each combination of species group and diam-
eter class, pair-wise comparisons of mean TPA and mean BA
were made for all pairs of the 10 level IV ecoregions. Addi-
tional pair-wise comparisons of mean TPA and mean BA were
made among level IV ecoregions for 1) the combination of all
Douglas-fir diameter classes, 2) the combination of all other
(i.e., non-Douglas-fir) conifer diameter classes, and 3) the
combination all Douglas-fir and other conifer diameter classes.
Whether the mean TPAs or mean BAs of two level IV ecore-
gions differed significantly from one another was assessed for
each combination of species group and diameter class using
Tukey’s Honest Significance Difference (HSD) method of
multiple comparisons with an experiment-wise error rate of
o = 0.05 (SAS Institute 2003, PROC GLM). Although not
discussed further in detail, the TPA and BA summary tables
and results of Tukey’s HSD multiple comparisons are included
for readers as Appendices 1-4.

Objective 3. Characterize the spatial variability
of trees and snags in 14 LSOG forests

Long belt transects were used to characterize the spatial
variability of standing trees and snags at 14 different LSOG
forest sites on BLM land in western Oregon. Both within- and
between-SDC spatial patterns were described. Three sites
were selected on each of the following BLM districts: Salem,
Eugene, Roseburg, and Medford. Two sites were selected on
the Coos Bay District. Sites were selected by consulting with
BLM personnel and/or examining air photos of areas contain-
ing recent timber sales for which complete pre-sale inventories
of trees existed. A range of species mixtures was selected,
although all forests sampled were dominated by Douglas-fir.

One or more belt transects > 330 ft were established at
each site (Table 2). At 13 of 14 sites with clearly sloping
terrain, transects were oriented to run from ridge top to valley
bottom (or vice-versa). The single transect at the one flat site
was oriented to continuously sample the longest cross-section
of forest possible. Although the general starting location of
each transect was determined using air photos, the exact
starting point of each transect was randomized.

Trees and snags > 36 in dbh were tallied along each tran-
sect using pairs of 0.10 ac, square (66 ft x 66 ft) plots located
contiguously on the left and right sides of the transect center
line. Data from each pair of 0.10 ac, square plots were pooled
into a single 0.20 ac, rectangular (66 ft x 132 ft) plot extending
66 ft along the transect line and 66 ft on either side of the tran-
sect line. (Recall that 66 ft = 1 chain and that the area defined
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by 1 chain x I chain = 0.10 ac.) Trees and snags < 36 in dbh
(but with heights > 4.5 ft) were sampled using circular, 0.05
ac plots centered at 66 ft intervals along the transect line. The
centers of the circular, 0.05 ac plots were located at O ft, 66 ft,
132 ft, and so on along each transect; the 0.20 ac, rectangular
plots were centered at 33 ft, 99 ft, 165 ft, and so on along each
transect. Consequently, with the exception of the circular, 0.05
ac plots located at the start and end point of each transect, the
two halves of each circular, 0.05 ac plot fell within two
different (but contiguous) 0.20 ac, rectangular plots.

Trees and snags with one-half or more of their basal
area falling within the appropriately sized plot were tallied by
diameter class: 0 in < dbh < 3 in, 3 in < dbh < 6 in, 6 in < dbh
< 121in, 12 in < dbh < 24 in, 24 in < dbh < 36 in, and so forth
by 12-inch diameter class to dbh > 96 in. The species of each
tree and the decay class of each snag was recorded. Decay
classes ranged from 1 (least decayed) to 5 (most decayed).

A complete description of the characteristics associated with
each decay class is found in Maser et al. (1988).

Prior to analysis, the tree and snags data were summa-
rized in five general diameter classes: 0 in < dbh < 3 in, 3 in
< dbh < 12 in, 12 in < dbh < 36 in, 36 in < dbh < 60 in, and
dbh > 60 in. Trees were separated into three species groups:
Douglas-fir, other conifer species, and hardwood species.
Snags were separated into two species groups based on
decay classes: decay classes 1-2 and decay classes 3-5. Taken
together, the 5 tree and snag species groups and 5 diameter
classes formed 25 species-diameter classes, or SDCs. (Note
that SDC is defined somewhat differently for Objective 3 than
for Objectives 1 and 2.) The number of trees/ac or snags/ac
was calculated for each SDC for each 0.20 ac, rectangular plot
(trees and snags > 36 in dbh) or 0.05 ac, circular plot (trees
and snags < 36 in dbh). Because the centers of the circular,
0.05 ac plots and 0.20 ac, rectangular plots were offset from
each other by 33 ft along each transect, an average number
of trees/ac or snags/ac was calculated for each SDC < 36 in
dbh for each successive pair of 0.05 ac, circular plots. These
average values were used for all subsequent spatial analyses
involving SDCs originally sampled using 0.05 ac, circular
plots.

The spatial variability of the 25 SDCs was characterized
in terms of both within-SDC spatial patterns and between-
SDC spatial patterns. Within-SDC spatial patterns were
described in terms of mean patch length and patch density
(i.e., number of trees or snags/ac) of a single SDC along
transect, as well as the mean gap length between patches of
the same SDC. For example, casual field observations in
LSOG forests suggest that Douglas-fir 36-60 in dbh might be
expected to occur in patches with average lengths of 132-
264 ft and average densities of 7-13 trees/ac. Similarly, prior
observations suggest that the average gap lengths between
patches of Douglas-fir 36-60 in dbh might fall between 66
and 198 ft. Patch and gap lengths along each transect were
measured in multiples of 66 ft. Means, standard deviations,
minima, and maxima of patch length, patch density, and gap



"Pa1ea0| SEM 109SURI} 4283 JO Aliolew Byl YaIYyM UM UONIas
(%%) Jauenb-1apenb ay3 jo uonduasap [eBa] 8yl SUIRIUOD (v{y ‘%) uonaag-abuey-diysumo] ‘uoBalQ uiaIsam Ui s1oLsIp Juswabeuey pueq jo neaing aaly
ul paieoo| saus YmolB-pjo pue |euoIssaaans-ale| | 1e sbeus pue saaly jo Aljiqerien |eieds ay) 8z118101RYD 0) Pasn sjoasuel) ayl jo uonduasag g ajqel

Variability in Older Forest Structure in Western Oregon

(3S “‘MN) Y0-MOTI-S9TL G8ST-086 06 v161 T [ELIOY [BLIOB]

(MS ‘aN) 10-MTT1Y-S9TL $T6-ST8 0zl 78L1 I o3pry ueSION Aeg so0D
=s ‘as) 0T-M80¥-SEEL $8TE-ST6T 061 0Tl I yoor) AoYSTYM

(MN ‘FS) £€-d€0d-S8EL 00SS-STHS 0¢ 96¢ 4

(MN ‘FS) €E-HE0Y-S8EL 0S#$-STHS 01¢ 78L1 I dnD urg,

(MS gs) 6C-A70d-S8EL 08817-0981 06¢ 8LIT 1 SIXOH PIOIPIIN
(AN ‘aN) 60-M80d-SSTL $19-099 973 96¢ T

(AN ‘AN) 60-M80d-SSTL STL-SLY So1 8TS I Aed JIOM

(MS ‘MS) 6T-MP0I-STEL 00€€-010¢ 09 765 T

(MS ‘MS) 6T-M¥0I-STEL 09€€-0S6T (0144 9TL I 3sa1)) ueIpuy

s ‘aN) 10-MT09-SSTL 09T€-STLT 062 6L T

(dS “aN) 10-MT0YI-SSTL SLYE-ST9T 09¢ ¥STl I yea1) 2[qqed 3Inqosoy
(3S ‘MN) ST-MLOY-SSTL STLI-0SST 011 ¥26 I puod 1NN

(MS gs) 10-MLOY-SS8IL ST8-GLL 09¢ 0861 I uresy uuoq

(MS AN €€-MLOY-S61L SEEI-$T6 081 066 €

(MS ‘aN) €€-MLOY-S6I.L 006-06L 06 97 4

(MS AN €€-MLOY-S61.L 00T1-SL8 09¢ 26 I yea1) uosuyor suasnyg
(MS ‘MS) YI-HE09-STIL $79T-0STT (0144 066 4

(MS ‘MS) YI-HE0d-STIL $792-00CT ove 26 I IT UITANS 0] (Inog

(dS ‘MN) 9¢-M80A-SST.L 009T-GLTT St #6S 14

(3s ‘MN) 9¢-M80Y-SST.L 0591-00CT 97 099 I 10, YINOS 19)sqO]

(dS ‘MN) LO-MLOY-SST.L 0082-009C 1233 765 €

(dS ‘MN) LO-MLOI-SSTL 0082-0S9C 09¢ 8TS T

(3S ‘MN) LO-MLOI-SST.L ST8T-00LT ¥2T 099 I SR YMON wores

?\_q\_ .e\; :c_uoum-cm-_mxnn___m__;o._. ct em:mm_ uoijeaa|y 303 yinuwizy AE —_um__u._ joasues] awep a)s usiq

6



length were calculated for each SDC using data pooled from
all sites where the SDC occurred.

Between-SDC spatial patterns were characterized in
terms of the degree of spatial overlap occurring between
two SDCs along each 66 ft of transect length. Specifically,
the proportion of times SDC 1 overlapped with SDC 2 was
calculated using data pooled from all sites where both SDC 1
and SDC 2 were present. For example, when both Douglas-fir
36-60 in dbh (SDC 1) and other (non-Douglas-fir) conifers
12-36 in dbh (SDC 2) occur in the same LSOG forest, it might
be expected that the larger Douglas-fir (SDC 1) will overlap
spatially one-half of the time with the smaller, other conifers
(SDC 2). A total of 25 x 24 = 600 between-SDC spatial pat-
terns were characterized for the 25 SDCs.

Results and Discussion

Objective 1. Create the BLM LSOG
conifer database

The BLM LSOG conifer database created contains
estimates of the number of trees/ac (TPA) and basal area
(BA, ft*/ac) for 13 tree species and 9 diameter classes at
586 late-successional and old-growth (LSOG) sites on BLM
lands in western Oregon. The combination of 13 species and
9 diameter classes represents 117 species-diameter classes
(SDCs). The following are also included in the database for
each of the 586 sites: BLM district, timber sale and unit, sale
year, unit acreage, legal coordinates (i.e., nearest township,
range, section, quarter section, and quarter-quarter section)
and geographic coordinates (i.e., longitude and latitude in
decimal degrees) of the estimated unit center, and the level
IIT and IV ecoregions within which the majority of the unit
fell. As of the date of publication of this report, the BLM
LSOG conifer database may be downloaded from the USGS
Forest and Rangeland Ecosystem Science Center website
(http:/lfresc.usgs.gov/ArcIMS/Website/lsog).

The BLM LSOG conifer database is absolutely unique
for three reasons. First, the database contains structural data
for a particularly large number— 586 —of LSOG forests
inventoried over a wide geographic area (Figure 1). Second,
the structural data—the number of trees/ac and basal area in
different species and diameter classes—are based on complete
censuses of all conifer trees > 1 ft diameter at breast height
found at each of the 586 inventoried older forests. Third, the
average area of each of the 586 inventoried older forests, 28.1
ac, clearly reflects the spatial scales typical of forest manage-
ment units on Federal lands covered by the Northwest Forest
Plan. All told, the BLM LSOG conifer database contains coni-
fer tree census data for a staggering 16,470 ac, or 25.7 mi?, of
late-successional and old-growth forests on five BLM districts
in western Oregon. As such, the BLM LSOG conifer database
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represents one of the largest collections of detailed data ever
assembled on older forest structure.

Objective 2. Compare and contrast ecoregion-
level variability in LSOG forest structure

The presence and absence of species identified coarse
ecoregion-level differences in LSOG forest structure. Certain
species were relatively consistent among the level III and
level IV ecoregions, whereas other species exhibited a high
degree of variability among ecoregions. For example, western
hemlock (WH) was present at > 0.50 of all sites in the level
IIT Coast Range (1), Willamette Valley (3), and Cascades
(4) ecoregions (Table 3). Similarly, six out of eight level IV
ecoregions in these three level III ecoregions had western red
cedar (WRC) present at > 0.50 of sites. In contrast, WH and
WRC were far less common at sites in the level III Klam-
ath Mountains (78) ecoregion. Indeed, WH and WRC were
entirely absent at sites in the level IV Siskiyou Foothills (78b)
ecoregion.

Viewing species differences by diameter class (i.e., by
SDC) and density (e.g., BA) in each SDC highlighted more
subtle structural differences among ecoregions. For example,
WH and WRC occurred in both the Coastal Uplands (1b) and
Western Cascades Montane Highlands (4b) level IV ecore-
gions (Table 3). Clear differences in the densities of WH and
WRC existed between the two ecoregions in terms of diameter
classes, however. The highest mean density of WRC observed
in each of the five diameter classes occurred in the Coastal
Uplands (1b), whereas the highest mean densities of WH all
occurred in the Western Cascades Montane Highlands (4b)
(Figure 2, Table 4).

The following narrative descriptions of LSOG forest
structure by level IV ecoregion were drawn from the data
summaries in Table 3, Figure 2, and Table 4. The Coastal
Uplands (1b) were characterized by WRC in all diameter
classes (as noted above), the largest Douglas-fir (DF), and
mid-sized Sitka spruce (SS). DF and SS were also character-
istic of the Coastal Volcanics (1d) ecoregion, but for different
diameter classes (DF 1-3 ft, SS 1-3 ft, and SS > 5 ft) than for
the Coastal Uplands (1b). The densities of WH and WRC were
considerably lower in the Coastal Volcanics (1d) ecoregion
than in the Coastal Uplands (1b).

In contrast to the Coastal Uplands (1b) and Coastal
Volcanics (1d), SS was almost entirely absent from the
Mid-Coastal Sedimentary (1g) and Southern Oregon Coastal
Mountains (1h). The Mid-Coastal Sedimentary (1g) and
Southern Oregon Coastal Mountains (1h) were the only level
IV ecoregions with sites containing Port Orford Cedar (POC).
POC was present at a higher proportion of the Southern
Oregon Coastal Mountains (1h) sites than of the Mid-Coastal
Sedimentary (1g) sites. Grand fir (GF) was present in both the
Mid-Coastal Sedimentary (1g) and Southern Oregon Coastal
Mountains (1h) ecoregions, but occurred more frequently and
with higher mean densities at sites in the Southern Oregon
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Coastal Mountains (1h). GF was also characteristic of sites in
the Willamette Valley Foothills (3d). The Willamette Valley
Foothills (3d) ecoregion was additionally characterized by DF
(2-3 ft) and incense-cedar (IC, 1-2 ft and > 4 ft).

The three level IV Cascade (4) ecoregions were more
different from one another than the level IV ecoregions of the
Coast Range (1) or Klamath Mountains (78). Although 9 of
the 13 conifer species represented in the BLM LSOG conifer
database occurred at sites in the Western Cascades Lowlands
and Valleys (4a), 5 of these 9 species occurred at 0.15 or fewer
of the Western Cascades Lowlands and Valleys (4a) sites. (A
similar pattern of high species diversity within an ecoregion
and low species consistency across sites was observed for
the Mid-Coastal Sedimentary (1g) ecoregion, above.) Con-
sequently, only small WRC was characteristic of the Western
Cascades Lowlands and Valleys (4a) ecoregion. The Western
Cascades Montane Highlands (4b), in contrast, were charac-
terized by WH in all diameter classes (as noted above), noble
fir (NF, 1-4 ft), and Pacific silver fir (PSF, 1-2 ft). The SDCs
characterizing the Umpqua Cascades (4f) were GF (2 ft and
>4 ft), IC (all diameter classes), sugar pine (SP, all diameter
classes), and western white pine (WWP, 1-3 ft).

The species characteristic of the Umpqua Cascades (4f)
were more similar to the species characteristic of the two level
IV ecoregions of the Klamath Mountains (78) than the species
characteristic of the other two level IV Cascades (4) ecore-
gions. SP was characteristic of the Umpqua Cascades (4f),
the Siskiyou Foothills (78b), and the Inland Siskiyous (78e),
and IC characterized both the Umpqua Cascades (4f) and the
Siskiyou Foothills (78b). Two other species —ponderosa pine
(PP) and white fir (WF)—were almost entirely confined to
sites in the Klamath Mountains (78).

Objective 3. Characterize the spatial variability
of trees and snags in 14 LSOG forests

The spatial distribution of trees and snags was not uni-
form at the 14 older forest transect sites in western Oregon.
Both within-SDC spatial patterns and between-SDC spatial
patterns were highly variable. The mean within-SDC patch
length and mean within-SDC patch density (TPA) of indi-
vidual species groups generally decreased with increasing
diameter class (Table 5). For example, the mean patch length
of Douglas-fir decreased from 377 ft for the 0-3 in diameter
class to 126 ft for the > 60 in diameter class. Similarly, the
mean density of Douglas-fir decreased from 43 TPA for the
0-3 in diameter class to 7 TPA for the > 60 in diameter class.

The general trends observed for within-SDC spatial
patterns are most likely reflections of the normal processes of
tree mortality and snag production and decay within stands.
As the trees in a patch increase in size, self-thinning reduces
patch density and —by creating gaps within a patch—can
divide the original patch into two smaller ones. Similarly,
tree growth and mortality lead to fewer but larger snags in a
patch. Decay also decreases the patch density of snags and
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can lead to the formation of gaps within patches of snags. The
formation of gaps within patches appears somewhat random,
however. Clear patterns for mean gap length between adjacent
patches of the same SDC were not as apparent for within-SDC
patch length and density (Table 5). For example, the mean gap
length between adjacent patches of Douglas-fir > 60 in (273
ft) was larger than that for Douglas-fir 36-60 in (133 ft), but
was smaller than that for Douglas-fir 12-36 in (335 ft).

Between-SDC spatial patterns were varied at the scale
examined (i.e., 66 ft of transect length). Not surprisingly,
more common SDCs occurred less frequently with less
common SDCs than vice versa (Table 6). For example, other
(i.e., non-Douglas-fir) conifers 0-3 in were far more common
than Douglas-fir > 60 in. The more common other conifers
0-3 in overlapped spatially with the less common Douglas-fir
> 60 in only 0.29 of the time. In contrast, the probability of
Douglas-fir > 60 in co-occurring spatially with other conifers
0-3 in was 0.75. Decay class 3-5 snags 0-3 in always occurred
with Douglas-fir and other conifers 3-36 in, but never with
hardwoods.

Management implications

An estimated $600,000-$1,200,000 worth of late-suc-
cessional and old-growth (LSOG) structural data are summa-
rized in the BLM LSOG conifer database (assuming a cost of
$1,000-$2,000 to inventory each of the 586 sites). Although
these data were collected as part of the BLM’s timber sale
program, they can prove extremely useful in setting long-term
structural goals for young stand where accelerating the devel-
opment of LSOG structural characteristics is a management
objective. Managers can, for example, use the BLM LSOG
conifer database to identify LSOG sites that are (were) located
close to a young stand they intend to manipulate silvicultur-
ally and then use the SDC data from these LSOG sites to help
define an LSOG structural target for the young stand. The
BLM LSOG conifer database also can be used to establish
more regional LSOG structural goals for young forests
(e.g., by ecoregion, as described above under Objective 2).

The average area inventoried at each of the 586 sites in
the BLM LSOG conifer database was 28.1 ac. Consequently,
LSOG structural targets derived from the BLM LSOG conifer
database will accurately reflect the scales typical of forest
management units on Federal lands in the Pacific Northwest
(e.g., > 25 ac). Combining the data in the BLM LSOG conifer
database with the within-SDC and between-SDC spatial data
(Objective 3) will enable managers to define more realistic
LSOG structural targets. This is particularly true if managers
are permitted to define LSOG structural goals at the 10- to
25-acre scale rather than establishing structural targets that
must be met on each and every acre. Consider, for example,
young stands in the level IV Coastal Uplands (1b) ecoregion
for which long-term LSOG structural goals are being defined
(e.g., Figure 2). For these stands, an LSOG basal area target
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of 80 ft> per /0 acres for western red cedar 2-3 ft dbh would
allow managers to define LSOG structures at scales that are
more realistic ecologically and operationally than would a
basal area target of 8 ft> per / acre. Although 80 ft* per 10
acres is mathematically equivalent to 8 ft* per / acre, the for-
mer target affords managers more opportunities when working
with young forests where accelerating the development of
realistic LSOG forest structures is a management goal.
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